
A Pragmatic Guide to
Introducing Rust into C/C++
Codebases with Minimal Risk

yalantis.com

Learn how to move to Rust step-by-step without rewriting your current codebase.

Why is Rust the new standard for backends?

5 key benefits of Rust adoption

3 myths about Rust

Step-by-step C/C++ to Rust adoption framework

Case in point: How Yalantis helped adopt Rust in a legacy C++ system

Wrap-up

About Yalantis

Table of Contents

yalantis.com

3

6

8

10

12

14

15

Why is Rust the new standard
for backends?

yalantis.com

For years, C and C++ were the go-to for high-performance systems. But
things are shifting. More and more companies are choosing Rust, a language
that gives you the speed of C++ without the constant worry about memory
bugs, plus modern tools and a much smoother developer experience.

And it’s not just hype. Rust has been voted the most loved programming
language nine years in a row in the Stack Overflow Developer Survey.

3

82.2% of developers say Rust is their most-admired language this year.

https://survey.stackoverflow.co/2024/

Here are the main
aspects that make
Rust a go-to:

yalantis.com 4

Rust eliminates whole classes of memory
bugs (buffer overflows, use-after-free).

Security by design

No garbage collection, fewer runtime
surprises, lower infrastructure costs.

Stable performance

Thread safety is enforced by the compiler,
making scaling multi-threaded backends
much less risky.

Safe concurrency

It’s not just developers
driving the shift,
governments are now
weighing in too.

Interesting fact: The
U.S. government
recommended
eliminate C/C++ in
security-critical
systems

Around 70% of software vulnerabilities in systems like Windows and Chrome
stem from memory-unsafe languages such as C and C++. That’s why the
U.S. Cybersecurity and Infrastructure Security Agency (CISA), together

with the FBI, has taken its strongest stance yet:

By January 1, 2026, software manufacturers handling critical infrastructure
must publish a memory safety roadmap. Developing new critical systems in C
or C++ when memory-safe alternatives like Rust exist will be considered a
“dangerous” and negligent practice.

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

Rust advantages have a visible impact on
the development process. Here’s what
companies adopting Rust report:

Faster development speed

+30%

yalantis.com 5

Fewer bugs reach production

-50%

Lower vulnerability count

-60%

Here are the main Rust
benefits that explain such
results

5 key benefits of Rust adoption
Legacy stacks slow teams down, but Rust makes a difference.

yalantis.com 6

C and C++ lack built-in memory safety, and
60–70% of critical security bugs come from
these issues. Microsoft has acknowledged
that roughly 70% of Windows security
vulnerabilities are caused by memory safety
issues. Rust enforces memory safety at
compile time, preventing buffer overflows and
use-after-free errors before they even run.

1. Minimal vulnerabilitiesSecurity risks and downtime

Multithreaded legacy code often causes data
races and deadlocks that are nearly
impossible to debug. Rust’s compiler
enforces thread safety at the type level,
eliminating entire classes of concurrency
bugs. This makes large-scale systems (think
databases, backends, OS kernels) far more
reliable under heavy load.

2. Reliable, crash-free codeConcurrency bugs

Legacy C/C++ stacks are tightly coupled,
making every change risky. Rust’s modular
design and strict compiler checks allow safe
refactoring and cleaner APIs. Companies
report 30–40% faster release cycles thanks to
fewer test-fix-retest loops and safer upgrades.

3. 30%+ faster releasesSlow feature delivery

.

 .

yalantis.com 7

C/C++ builds are notoriously fragile, relying on
custom scripts and dependency jungles. Rust
ships with Cargo, a built-in package manager
that guarantees reproducible builds and
smooth dependency handling. This lowers
integration friction across CI/CD pipelines and
cloud environments.

4. Smooth, predictable
integrations

Complex build systems

It’s true: Rust developers are fewer than C++
veterans. But those who do know Rust are
often early adopters, open to modern
practices like DevSecOps and cloud-native
tooling. Rust’s community has grown 5× in
the last 5 years, making hiring easier every
year.

5. Future-proof teamsLegacy code experts

.

For scaling
teams, this
means smaller
but more
forward-thinking
talent pools that
push projects
toward long-term
maintainability.
But companies often
postpone Rust adoption
due to several concerns that
aren’t true in reality.

3 myths about Rust
Rust can be integrated safely into large, complex systems without downtime or
full rewrites, and your team can rest the same.

yalantis.com 8

This is the biggest misconception. Adopting
Rust doesn’t mean throwing away your
existing codebase. Instead, teams can start
small: choose one non-critical module, rebuild
it in Rust, and test how it interacts with the
current system. From there, adoption can
expand gradually. Many companies run mixed
systems where C++ and Rust coexist — no
massive rewrite required.

Myth #1: “We’d have to rewrite
everything”

Rust is designed to be integrated step by
step.

Myth #2: “Adopting Rust will disrupt
delivery or introduce downtime”

Because Rust is fully compatible with C and C++, new modules can run
alongside the old system. This ensures continuous delivery with no downtime
and minimal disruption to ongoing development.

A proven adoption roadmap looks like this:

How to
Move
to Rust

yalantis.com 9

Another common concern is staffing. In
reality, you don’t need a new team — you
need a learning roadmap. Typically, senior
engineers start first, improving their tech stack
with Rust while still maintaining the C++
system. With the right mentorship, the same
team can transition smoothly, continuing to
support legacy code while introducing Rust.
Over time, more engineers pick it up, and the
team naturally shifts to Rust without hiring a
whole new workforce.

Myth #3: “We’ll have to rebuild our
team entirely”

Here’s a step-by-step guide
to Rust adoption

Step-by-step C/C++ to Rust
adoption framework
Adopting Rust doesn’t require rewriting your entire C/C++ codebase. Instead, follow
a structured, low-risk approach: start small, prove value, and scale gradually.

yalantis.com 10

Start by taking a close look at your codebase. Pick non-critical but high-value modules that could benefit most from

Rust. Gather metrics like performance, memory usage, and error rates to understand where the pain points are. Define

what success looks like and set realistic expectations with your team. This step is about knowing where Rust can

make a difference without putting existing operations at risk.

Step 0: Assessment & Planning (2 weeks)

Next, test the idea with a pilot project. Bring together a small cross-functional team and develop a single Rust module

alongside your C++ system. Benchmark its performance, check how well it integrates, and evaluate maintainability. By

the end of this phase, you’ll know whether Rust can coexist with your legacy code and deliver real improvements.

Step 1: Feasibility (2–12 weeks)

With feasibility confirmed, move to a working proof of concept. Build the Rust component in a production-like

environment, design APIs, run tests, and integrate it with your build system. This step lets the team see Rust in action.

It’s also the perfect opportunity to gather feedback, fine-tune integration practices, and show stakeholders the tangible

benefits of Rust before committing further.

Step 2: Proof of Concept (1–2 months)

Once the PoC succeeds, it’s time to start expanding Rust. Teams can be split roughly 50/50 between Rust and C++

so legacy features continue running smoothly. New features are developed in Rust, integrated gradually with the C++

system, and monitored through dashboards for stability and performance. At the same time, knowledge is shared

across the team so everyone gains confidence with Rust. This approach lets you scale adoption without disrupting

ongoing operations.

Step 3: Development & Integration (3–6 months)

Finally, Rust becomes the main language in the system. New modules are written in Rust, while legacy C++ is kept

only where necessary. Continuous practices like mentorship, CI/CD, security scans, fuzzing, and code reviews ensure

quality and maintainability. Over time, your system is more secure, more stable, and easier to evolve, while the team

has grown confident in Rust without facing downtime.

Step 4: Wider adoption (6–18 months)

Based on Yalantis' experience of helping
businesses move to Rust, here’s the
roadmap you can use.

yalantis.com 11

Case in point: How Yalantis
helped adopt Rust in a legacy
C++ system
Our client was struggling with a legacy C++ system. Frequent bugs, security
vulnerabilities, and slow feature delivery were holding the team back. They
wanted to start developing new functionality in Rust, but were understandably
cautious about disrupting ongoing operations. Yalantis proposed a low-risk
approach.

Here’s what
we did:

Assembled a cross-functional
team: Rust engineer, Systems
architect, Analyst, PM, and QA
lead

Conducted a 2 month feasibility
study

Selected a single module as a
pilot

Integrated Rust alongside the
existing C++ code

Tested compatibility,
performance, and maintainability
of the pilot module

yalantis.com 12

The Rust component ran smoothly within the C++ system. Following the pilot,
the client’s team gradually expanded Rust adoption. With Yalantis
mentorship, senior engineers led the transition, while the rest of the team
continued maintaining the legacy C++ code. Over time, more modules were
rewritten in Rust without downtime or disruption.

Here are the
results our
client achieved
right after:

yalantis.com 13

Faster feature delivery

+45%

Reduction in bugs

-60%

More secure system operations

+30%

in Rust while maintaining C++ expertise

Team upskilled

Wrap-up
Adopting Rust doesn’t have to be risky or disruptive. If you follow a structured,
incremental approach, teams can modernize their systems, improve security,
and accelerate development without rewriting legacy code.

Rust adoption
checklist

1. Start small & run a feasibility study on a
single module to test Rust compatibility

yalantis.com 14

2. Prove value by developing a PoC to see
how it performs

3. Roll out an MVP, incrementally adding
Rust modules

4. Starting with seniors, provide guidance,
and gradually upskill the broader team

5. Track faster feature delivery, fewer bugs,
and improved system security

About Yalantis

yalantis.com

Yalantis is an engineering partner specializing in complex digital product
development, with deep expertise in IoT, embedded systems, and Rust
adoption. Since 2008, we have been helping companies across industries,
including FinTech, healthcare, real estate, and supply chain, build reliable
software solutions that evolve with their business needs.

Our Rust development services ensure mission-critical systems run faster,
safer, and more efficiently, while integrating seamlessly with existing C, C++, or
other legacy systems.

https://yalantis.com/
https://yalantis.com/services/rust-development-services/

